Key access and utilization descriptors for faba bean genetic resources

This list consists of an initial set of characterization and evaluation descriptors for faba bean utilization. This strategic set of descriptors, together with passport data, will become the basis for the global accession level information portal being developed by the Bioversity-led project, Global Information on Germplasm Accessions (GIGA). It will facilitate access to and utilization of faba bean accessions held in genebanks and does not preclude the addition of further descriptors, should data subsequently become available.

Based on the comprehensive ‘Faba bean Descriptors’ published by ICARDA and IBPGR (now Bioversity International) in 1985, the list was subsequently compared with a number of sources such as ‘Descriptors for Fababean’ (USDA-ARS), UPOV Technical guidelines (2003), Minimal descriptors of Faba bean (NBPGR), and the traits in need of further research identified in the ‘Global Strategy for the Ex Situ Conservation of Faba Bean’ (GCDT, 2009).

This minimal set defines a first priority set of characteristics to describe, to access and to utilize *Vicia faba* genetic resources. A worldwide distribution of experts involved in an online survey was assured and the list was afterwards validated by a Core Advisory Group (see ‘Contributors’) led by Dr Kenneth Street of ICARDA.

Biotic and abiotic stresses included in the list were chosen because of their wide geographic occurrence and significant economic impact at a global level.

Numbers in parentheses on the right-hand side are the corresponding descriptor numbers listed in the 1985 publication. Descriptors with numbers ending in ‘X’ are new descriptors that were added during the development of the list below.

PLANT DATA

Growth habit

- 1 Determinate, i.e. stems with terminal inflorescence
- 2 Semi-determinate, i.e. without terminal inflorescence
- 3 Indeterminate

Branching from basal nodes

Mean number of branches (to the nearest whole number) per plant taken from five representative plants in late flowering stage

Plant height [cm]

Measured at near maturity from ground to the tip of the plant. Average of 10 plants
Days to flowering (4.2.1)
Number of days from sowing until 50% of plants have flowered. However, in dry land areas where planting occurs in dry soils, it is counted from the first day of rainfall or irrigation which is sufficient for germination.

Days to pod maturity (4.2.2)
Number of days from sowing until 90% of the pods have dried. See 4.2.1 for planting in dry soils.

Flower ground colour (4.2.3)
Ground colour of standard petal (flag)
1 White
2 Violet
3 Dark brown
4 Light brown
5 Pink
6 Red
7 Yellow
99 Other (i.e. ‘mixed’, specify in the Notes descriptor)

Wing petal colour (4.2.5)
1 Uniformly white
2 Uniformly coloured
3 Spotted
99 Other (i.e. ‘mixed’, specify in the Notes descriptor)

Pod angle/attitude at maturity (4.2.6)
1 Erect
2 Horizontal
3 Pendent
99 Other (i.e. ‘mixed’, specify in the Notes descriptor)

Pod length [cm] (4.2.10)
Mean of five dry pods

Number of seeds per pod (4.3.2)
Mean of five dry pods
100-seed weight [g]

Ground colour of testa (seed coat)
Observed immediately after harvest (within one month after harvest)
1 Black
2 Dark brown
3 Light brown
4 Light green
5 Dark green
6 Red
7 Violet
8 Yellow
9 White
10 Grey
99 Other (i.e. ‘mixed’, specify in the Notes descriptor)

Seed shape
1 Flattened
2 Angular
3 Round
99 Other (i.e. ‘mixed’, specify in the Notes descriptor)

Resistance to lodging
3 Low
5 Medium
7 High

Number of pods per node
Mean number of pods on the second pod-bearing node of five plants

Pod shattering
0 Non-shattering (wrinkled-pod type)
1 Shattering

Number of flowers per node

4 Key access and utilization descriptors for faba bean genetic resources

Abiotic stresses

High temperature (7.2)
Salinity (7.5)
Frost (7.Χ)

Biotic stresses

Aphids (*Aphis* spp.) (8.1.1)
Seed weevils (*Bruchus* spp.) (8.1.5)
Chocolate spot (*Botrytis fabae*) (8.2.1)
Ascochyta blight (*Ascochyta fabae*) (8.2.2)
Rust (*Uromyces fabae*) (8.2.4)
Stem rot (*Sclerotinia* spp.) (8.2.8)
Faba Bean Yellow Mosaic Virus (FBYM) (8.4.Χ)

Notes
Any additional information may be specified here, particularly that referring to the category ‘Other’ present in some of the descriptors above.

CONTRIBUTORS
Bioversity is grateful to all the scientists and researchers who have contributed to the development of this strategic set of ‘Key access and utilization descriptors for faba bean genetic resources’, and in particular to Dr Kenneth Street who provided scientific direction. Adriana Alercia provided technical expertise and guided the entire production process.

Core Advisory Group
Kenneth Street, ICARDA, Syria
Gérard Duc, INRA, France
Fouad Maalouf, ICARDA, Syria
P. N. Mathur, Bioversity International, India
Robert Redden, Department of Primary Industries Victoria, Australia
Larry Robertson, USDA-ARS, USA
Reviewers

Algeria
A. Abdelguerfi, ENSA

Azerbaijan
Almas Asadova, Genetic Resources Institute of Azerbaijan National Academy of Sciences

Bolivia
Tito E. Claure, Pairumaní’s Phytoecogenetical Research Center

Canada
Axel Diederichsen, Plant Gene Resources of Canada, Agriculture and Agri-Food Canada

China
Zong Xuxiao, Institute of Crop Science, Chinese Academy of Agricultural Sciences

Germany
Wolfgang Link, University of Göttingen
Ulrike Lohwasser, Leibniz Institute of Plant Genetics and Crop Plant Research

India
Kalyani Srinivasan, NBGPR

Italy
Andrea Carboni, CRA-CIN

Portugal
Isabel Duarte, INRB/INIA
Maria Manuela Veloso, INRB/INIA

Russia
Sergey Bulyntsev, Vavilov Institute of Plant Industry

Spain
María José Suso, Instituto de Agricultura Sostenible (CSIC)

Turkey
Lerzan Aykas, Aegean Agricultural Research Institute

USA
Bonnie J. Furman, USDA-ARS