Key access and utilization descriptors for taro genetic resources

This list consists of an initial set of characterization and evaluation descriptors for taro utilization. This key set of strategic descriptors, together with passport data, will become the basis for the global accession-level information system being developed by the Bioversity-led project, Global Information on Germplasm Accessions (GIGA). It will facilitate access to and utilization of taro accessions held in genebanks, and does not preclude the addition of further descriptors, should data subsequently become available.

Based on the comprehensive list of ‘Descriptors for Taro (Colocasia esculenta)’ (IPGRI, 1999), this minimal set, listed below with the original descriptor states, was developed in consultation with taro experts worldwide, and further refined by a Core Advisory Group (see ‘Contributors’) led by Dr Danny Hunter of Bioversity International.

Biotic and abiotic stresses included in the list were chosen because of their wide geographic occurrence and significant economic impact.

The numbers in parentheses on the right-hand side are the corresponding descriptors numbers as published in the publication ‘Descriptors for Taro (Colocasia esculenta)’ (IPGRI, 1999).

Number of stolons (side shoots) (7.1.3)

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>1–5</td>
</tr>
<tr>
<td>2</td>
<td>6–10</td>
</tr>
<tr>
<td>3</td>
<td>11–20</td>
</tr>
<tr>
<td>4</td>
<td>>20</td>
</tr>
</tbody>
</table>

Number of suckers (direct shoot) (7.1.4)

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Absent</td>
</tr>
<tr>
<td>1</td>
<td>1–5</td>
</tr>
<tr>
<td>2</td>
<td>6–10</td>
</tr>
<tr>
<td>3</td>
<td>11–20</td>
</tr>
<tr>
<td>4</td>
<td>>20</td>
</tr>
</tbody>
</table>

Leaf blade colour (7.2.4)

Observes on fully expanded and mature leaves

<table>
<thead>
<tr>
<th>Number</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Whitish</td>
</tr>
<tr>
<td>2</td>
<td>Yellow or yellow green</td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
</tr>
<tr>
<td>4</td>
<td>Dark green</td>
</tr>
<tr>
<td>5</td>
<td>Pink</td>
</tr>
<tr>
<td>6</td>
<td>Red</td>
</tr>
<tr>
<td>7</td>
<td>Purple</td>
</tr>
</tbody>
</table>
8 Blackish (violet–blue)
99 Other (specify in the Notes descriptor)

Petiole junction colour
(7.2.9)
Observed on the upper side
0 Absent
1 Yellow
2 Green
3 Red
4 Purple
99 Other (specify in the Notes descriptor)

Leaf main vein colour
(7.2.11)
Observe the upper side of leaf blade, beyond junction
1 Whitish
2 Yellow
3 Orange
4 Green
5 Pink
6 Red
7 Brownish
8 Purple
99 Other (specify in the Notes descriptor)

Petiole colour
(7.2.14)

Colour of top third
(7.2.14.1)
1 Whitish
2 Yellow
3 Orange
4 Light green
5 Green
6 Red
7 Brown
8 Purple
99 Other (e.g. ‘bronze’, black; specify in the Notes descriptor)

Colour of middle third
(7.2.14.2)
Same colours as for 7.2.14.1

Colour of basal third
(7.2.14.3)
Same colours as for 7.2.14.1
Petiole basal-ring colour (7.2.16)

- 1 White
- 2 Green (yellow green)
- 3 Pink
- 4 Red
- 5 Purple
- 99 Other (specify in the Notes descriptor)

Flower formation (7.3.1)

- 0 Absent
- 1 Rarely flowering (less than 10% of plants flowering)
- 2 Flowering (more than 10\(^1\) of plants flowering)

Corm branching (7.5.3)

- 0 Unbranched
- 1 Branched

Corm shape (7.5.4)

- 1 Conical
- 2 Round
- 3 Cylindrical
- 4 Elliptical
- 5 Dumb-bell
- 6 Elongated
- 7 Flat and multifaced
- 8 Clustered
- 9 Hammer-shaped
- 99 Other (specify in the Notes descriptor)

Corm flesh colour of central part (7.5.7)

- 1 White
- 2 Yellow
- 3 Orange
- 4 Pink
- 5 Red
- 6 Red–purple
- 7 Purple
- 99 Other (e.g. if colour is not uniform—blotches of lighter or darker pigmentation—specify in Notes descriptor)

1 10% is considered to be the level of frequent flowering.
Key access and utilization descriptors for taro genetic resources

Dry matter content of corms [mg/100 g DM] (8.1.2)
At short storage (<1 week)

Corm acridity [mg/100 g DM] (8.1.5)

<table>
<thead>
<tr>
<th>Acridity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>≤50 mg</td>
</tr>
<tr>
<td>Low</td>
<td>51–100 mg</td>
</tr>
<tr>
<td>Intermediate</td>
<td>101–300 mg</td>
</tr>
<tr>
<td>High</td>
<td>>300 mg</td>
</tr>
</tbody>
</table>

Palatability (8.1.7)

Taste panel test

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Bad</td>
</tr>
<tr>
<td>5</td>
<td>Fair</td>
</tr>
<tr>
<td>7</td>
<td>Good</td>
</tr>
</tbody>
</table>

Plant maturity (earliness) (8.3.1)

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very early</td>
<td>(<4 months)</td>
</tr>
<tr>
<td>Early</td>
<td>(4 to 6 months)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>(6 to 8 months)</td>
</tr>
<tr>
<td>Late</td>
<td>(8 to 10 months)</td>
</tr>
<tr>
<td>Very late</td>
<td>(>10 months)</td>
</tr>
<tr>
<td>Undetermined growth</td>
<td>(wild types)</td>
</tr>
</tbody>
</table>

Reaction to drought (9.2)
Scored under natural conditions during day period for at least four weeks

Reaction to soil salinity (9.4)

Stress susceptibility to Taro leaf blight (*Phytophthora colocasiae*) (10.2.1)

Notes
Any additional information may be specified here, particularly that referring to the category ‘Other’ present in some of the descriptors above.
CONTRIBUTORS
Bioversity is grateful to all the scientists and researchers who contributed to the development of this strategic set of key access and utilization descriptors for taro genetic resources. The following Bioversity staff contributed to this exercise: Danny Hunter, who provided scientific direction, and Adriana Alercia who provided technical expertise and guided the whole production process.

Core Advisory Group
Danny Hunter, Bioversity International, Italy
Tomas Ayala-Silva, USDA-ARS National Germplasm Repository, USA
Anton Ivancic, Faculty of Agriculture, University of Maribor, Slovenia
Grahame Jackson, Australia
Vincent Lebot, CIRAD, Vanuatu
V. Ramanatha Rao, Bioversity, India
Mary Taylor, SPC, Fiji

Reviewers
China
Ke Weidong, Wuhan Vegetable Research Institute

Japan
Peter Matthews, National Museum of Ethnology

Nicaragua
Guillermo Reyes Castro, Universidad Nacional Agraria

Nigeria
Egbichi Nnenna Adaoha Mbanaso, National Root Crops Research Institute

Papua New Guinea
Tom Okpul, PNG University of Technology

Peru
Llermé Rios Lobo, INIEA

Philippines
Dilberto O. Ferraren, Philippine Root Crops Research and Training Centre (PRCRTC)
Maria Lea Villavicencio, National Plant Genetic Resources Laboratory, Institute of Plant Breeding-Crop Science Cluster

Samoa
Tolo Iosefa, University of the South Pacific

USA
Carlos Ortiz, University of Puerto Rico