Application of NGS-generated SNP data to complex crops studies: the example of Musa spp. (banana)

Hueber Y1, Sardos J1, Hřibová E2, Van den houwe I3, Roux N1, Rouard M1
1 Bioversity International - Parc Scientifique Agropolis II, 34397 Montpellier, France
2 Institute of Experimental Botany - Rozvojová 263, 165 02 Prague, Czech Republic
3 Bioversity International Transilvania - Willem de Croylaan 42 box 2455, BE3001 Heverlee, Belgium

Abstract: Over recent years, Next-Generation Sequencing (NGS) has become widely used by scientists to obtain high resolution genomic data from many species. In parallel, different Next-Generation genotyping techniques have been developed. However, determining their respective suitability to different research contexts can be challenging, especially when studying highly heterogeneous and/or allopolyploid plants. Genotyping data was generated from diploids and triploids Musa (banana) samples using two restriction-site associated DNA sequencing methods: Genotyping by Sequencing (GBS) and Restriction site Associated DNA markers (RAD). Both methods reduce the complexity of the targeted genomes and allow obtaining millions of markers across many individuals at a reasonable cost. The potential and limitations of both techniques have been highlighted based on different concrete applications such as: i) Filtering of raw data to get highly reliable markers for Genome Wide Association Studies (GWAS); ii) Comparison of the number, depth and distribution of markers obtained from each technique using 12 diploid and 4 triploid accessions, iii) Computation of phylogenetic trees for genetic diversity analyses involving taxonomically distant taxa, and iv) Use of low quality DNA from leaf samples gathered during collecting missions.

8 steps to get highly reliable markers for GWAS

Raw variants (SNPs, short indels)
1) Remove individuals with missing data > 50%
2) Discard markers with one or more missing genotypes
3) Remove non-polymorphic markers
4) Keep only biallelic markers
5) Remove markers with Fis (inbreeding coefficient) score outside normal range of gaussian distribution (in our case inferior to -0.8)
6) Keep markers with minor allele frequency (MAF) ≥ 5%
7) Seed to missing genotypes positions with read depth < 10
8) Discard markers > 9 missing genotypes

Analysis-ready variants

Use of low quality DNA extracted from leaf samples

Figure 1: Filtration pipeline on raw variants (SNPs, short indels) called on 166 accessions of M. acuminata from the International Transplant Center (ITC) using Genotyping-By-Sequencing (GBS) single-end methodology to get highly reliable markers for Genome Wide Association Studies (GWAS). Raw variants were called before filtration using the GBS analysis pipeline (Tassel, Version 3). Starting with 148,108 raw variants, only 5,544 biallelic variants were used to perform GWAS analysis.

Figure 2: Raw and filtered marker (SNPs, small indels) average number for a) 12 diploids and b) 4 triploids from ITC. Filtering process includes steps 1, 2, 3, 5, 7 and 9 (adapted to the number of individuals: maximum 4 and 1 missing genotypes for diploids and triploids, respectively) from Figure 1. Error bars represent standard error.

Figure 3: Depth of coverage average of raw and filtered markers for a) 12 diploids and b) 4 triploids from ITC. Error bars represent standard error.

Figure 4: Markers count (filtered markers from the 12 diploids) per interval of 1 kb along chromosome 1 with a) GBS (red) and b) RAD (blue) methodology. Note: 48-plex GBS was performed at Cornell University (USA) using a protocol modified from Elshire et al., 2004 RAD sequencing (paired and reads -1.5x) was performed at the Beijing Genomics Institute (China).

Figure 5: Phylogenetic trees generated with markers coming from a) GBS (SPEF7 Penta) and b) RAD sequencing (1 kb interval) on 11 Musa accessions. Trees were filtered with missing value <0.05, MAF ≥ 0.05, coverage >30, LD <= 0.2. Trees were computed as described in SNPphylo (Li et al., 2014) but using Phylogeny (best of 200/0/20). Overall, the results are similar but topology differs for some branches highlighting the importance of sampling for sub-species resolution despite a high number of data points.

References:

Acknowledgements:
Noel Chen and the Chompiphi (BGI)
Katie Hyma and Sharon Mitchell (Cornell University)